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Abstract

Blooms ofPseudo-nitzschiapecies are frequent, but presently unpredictablbe
Juan de Fuca Eddy region off the coasts of Washin@i#S) and British Columbia
(Canada). This upwelling eddy region is proposele the bloom initiation site, from
nutrients upwelled to the surface, before cellsemteained into the coastal surface
currents. During a shipboard study, we charaadrthe different stages of tRseudo-
nitzschiabloom development from its initiation and interwation, to its eventual
sinking and dissipation. Specifically, we followadvater mass using lagrangian
ARGOS-tracked drifters released at the eddy wasssnand quantified production of
dissolved and particulate domoic acid, and the iplhygical status of th@seudo-
nitzschiacells with regards to photosynthesis, nutrientdsesnd sinking rates, along
with its relationship with competing species —histcase, the marine euglenoid,
Eutreptiellaspp. The drifter study allows for an interpretataf the presence or
absence oPseudo-nitzschiand domoic acid against active environmental facto

particularly copper and iron.

Key Words: algal biotoxins, amnesic shellfish poisoning, pe DFB, domoic acid,

Harmful Algal Blooms, iron, Juan de Fuca EdBgeudo-nitzschiaNVashington State
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1. Introduction

The Juan de Fuca eddy is a nutrient-rich, physicatentive region off the
northwestern U.S. coast that serves as an iniigiite for toxigenic diatoms of the
Pseudo-nitzschigenus Pergallo [Heterokonta, Bacillariophyceaedifier et al., 2002;
Trainer and Hickey, 2009; Hickey et al., 2013).isTiegion serves as a natural
laboratory for studying thBseudo-nitzschiaells, and the oceanographic progression of
the blooms at the eddy core, where nutrients dredaced, to the possible intersection
of the bloom to the coastline (Adams et al., 200@jner et al., 2002), where domoic
acid is introduced to economically, socially, amdturally significant shellfish
populations (Chadsey et al., 2011; Dyson and Huppefi0). Less studied are the
physiological changes associated with the prograssiPseudo-nitzschifrom the
bloom initiation site to the presumably more matoliem some distance and time
away from the initiation site.

Historically, researchers have used a spatial cems&ihod to systematically acquire
and record data about the members of a given bleoming population. This approach
is valuable, links well with standardized survegsghysical and chemical profiles and
provides a spatial template from which the trajgctnd path of the bloom cells can be
transcribed. The alternative is to plan the regeand cruise track “to follow the
bloom”, or rather, to follow a drifter over timeatis designed to track water at a
specific depth — water that contains the plankt®eom cells under study. This
Lagrangian approach is comparable to a populatbbiort survey, where the same
population is followed over time, and key populatfactors such as growth, loss,

photosynthetic efficiency and physiological heaé#m be assessed within the bloom
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(Lewitus et al., 2012; Trainer et al., 2012a). sTlaiter approach enables measurements
at one point in time to be confidently connectethvprrevious and future measurements
The Ecology and Oceanography of Harmful Algal Bleaamthe Pacific Northwest

(ECOHAB-PNW) was a 5-year, 6-cruise multi-discipliy project that measured
physical, chemical, and biological parameters aasedt with the periodic blooms of
Pseudo-nitzschiapecies off the coasts of Washington State and&arer Island,
British Columbia including the entrance watersha Strait of Juan de Fuca. In
September 2004, the cruise strategy included {ease of Lagrangian ARGOS-tracked
drifters that when placed at the sources of nusiéeddy core; Hickey et al., 2006;
MacPhadyen et al., 2008) enabled the longituditalysof the phytoplankton
community. The multi-week cruise occurred duridgrge, nearly monospecific diatom
bloom ofP. cuspidatahat co-dominated the phytoplankton assemblage tivé
euglenoid Eutreptiellaspp. (Trainer et al., 2009b). There were no sigaitft
correlations between the observed domoic acid (EoRcentrations [particulate DA
(pDA) and cellular DA] and the ambient concentnasi@f macronutrients (nitrate,
orthophosphate and silicate) (Trainer et al. 2008b)with the majority of the spatial
census cruises, neither were correlations detde®deen pDA oPseudo-nitzschia
concentrations and total bacteria or cyanobactdmsdances. Combined with the
correlational assessment of environmental, ecadbgied toxicological data, we used a
series of grow-out experiments to consider if thstplate that domoic acid acted as a
ligand to bind either copper or iron (Rue and Bndla2001), improving the
physiological health of the cells as these putétilmniting trace metals were
scavenged from the environment (Maldonado et @022Wells et al., 2005), enabling

Pseudo-nitzschia to achieve less restricted plogicdl health Here we demonstrate
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how the independent natureRdeudo-nitzschigs best revealed by the variation in two
trace metals — copper and iron — working in conjiamcwith particulate and dissolved

DA levels.

2. Materials and methods
2.1. Cruise

The ECOHAB-PNW-III cruise was carried out aboard RV Atlantis (AT11-
17) during 8-28 September 2004. The initial sumagyion for a large-scale synoptic
assessment covered. 12,000 knf, spanning a N-S latitude line from 48\rto 47.0
°N, along a longitude of 125°%/. The synoptic scale survey grid was designed to
include areas influenced by the Strait of Juanw=aFthe Juan de Fuca Eddy region

and the coastal upwelling region off the Washingtoast.

2.2. Drifters

Lagrangian ARGOS-tracked drifters (Brightwater tnatent Co. models 104a
and 115) were deployed to delineate patterns ameldspof surface flows in the eddy
area, as well as to determine the ultimate faeddfy water. These drifter models were
designed according to the Davis/CODE configurateaccurately track the upper 1 m
of the water column (Davis, 1985), and transmittebdourly GPS position to the
ARGOS satellites. Drifter A was deployed in theevieddy at 21:00 h on September

16 and was followed for 10 days.

2.3. Satellite imagery
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Sea-viewing wide field-of-view sensor (SeaWiFS) gy was acquired from
the National Oceanic and Atmospheric Administra8diNOAA) Coastwatch Program.
The images were processed with the latest verdi@eaWiFS data analysis system
(SeaDAS 4.0), which uses an atmospheric corretiiahcompensates for near-infrared
water leaving radiance and absorbing aerosols @woadd Wang, 1994; Stumpf et al.,
2003). The resulting chlorophyll imagery was depeld using the global OC4

algorithm, with 1 km resolution (O'Reilly et alQ@0).

2.4.Chlorophyll a

Surface samples were analyzed for phytoplanktomass as chlorophyll a (chl-
a L™ using the non-acidificatioim vitro fluorometric technique (Welschmeyer,
1994). Seawater was filtered onto glass fibeerfdt(Whatman GF/F filters; 25-mm
diameter, 0.7 um nominal pore size) at low presgr® kPa) and immediately
extracted in 90% acetone for approximately 24 2@tC. Chla concentrations were
determined with a Turner Designs 10AU fluorometditcated at the beginning of each
cruise with pure ch&in 90% acetone and monitored for instrument diufting the

cruise using a solid secondary standard.

2.5. Nutrients

Water samples for dissolved inorganic macronutréerayses were collected at
a depth of 5 m using a 10 L Niskin bottle. Unfiidrsamples were collected in pre-
cleaned polypropylene tubes and freshly analyzesgafor nitrate plus nitrite (NO+
NO,": hereafter referred to as nitrate), orthophosp{R@™), and silicate [Si(OH)

with a Lachat QuikChem8000 Flow Injection Analysystem using standard
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calorimetric techniques (Smith and Bogren, 2001ep@al and Bogren, 2002; Wolters,

2002; respectively).

2.6. Domoic acid

Dissolved DA (dDA) and particulate DA (pDA) con¢eations were measured
on sample filtrates and filters, respectively (Iitire Corp. mixed cellulose ester filters;
0.45 um) using the direct competitive enzyme linkethunoassay (CELISA) Biosense
kits (Biosense Laboratories, Bergen, Norway), aiffextiversion of the indirect
CELISA method as described in Garthwaite et al989Samples were analyzed in
duplicate, and the occasional poor replicates tgaed. The limit of detection for
seawater samples was 6.8 rij hnd the limit of quantification was 13.9 ng.L
Cellular DA concentrations were estimated by dividpDA concentrations by the
corresponding®seudo-nitzschiaell concentrations. These estimates were resdrict
samples containing a minimum of 50 cells, providan®5% confidence interval af
30% of the mean cell density (Lund et al. 1958)t#esfocus on this paper is on DA
release byseudo-nitzschigarticulate DA along the drifter path data aréstmwn

but are the focus of a complementary paper by ldssaal., (unpublished data).

2.7.Pseudo-nitzschia cell counts and species identifina

Samples for cell quantification were collected abaninal 1 m depth along the
Drifter A track using 10 L Niskin bottles. TotBseudo-nitzschiaells were quantified
from whole water samples preserved with bufferethfdin (<1% final concentration).
Cells were enumerated with a Palmer-Maloney cogrtlhramber using a Zeiss

Axiovert 135 inverted light microscope. Sample8 (L) were settled when necessary
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for at least 24 h and counted at 200 x (total) nfeggion. Surface phytoplankton
samples were collected fBiseudo-nitzschiapecies identification at each station using
a 20-um mesh phytoplankton net.cuspidatavere positively identified using
transmission electron microscopy (Lundholm et2003).

Eutreptiella cell countsSub-samples for cell quantification were colledieain
the Pseudo-nitzschiaample bottles. Unpreserved, unstaiBetreptiellacells were
quantified immediately using a Becton Dickenson B&alibur flow cytometer,
equipped with a 15-mW laser exciting at 488 nm. fasmwere run at a flow rate of 60

uL mint and the cells discriminated using particle size emorophyll content.

2.8. Sinking Rates

Samples for determination of sinking rates weréectéd from the surface
(approximately, 1 m depth) using 10 L Niskin baitl& modified SetCol (settling
column) of Bienfang (1981) was used to estimatesthking and floating rates of
phytoplankton (Beall, 2009). Triplicata. 500 mL samples of the natural assemblage
were homogenized and decanted into glass colum@<if2 diam., 50 cm tall). After a
3-h incubation, top, middle and bottom fractiongevweemoved from the column. The
volumes of the fractions were measured for eadhrggtolumn. The rates estimated
by the SetCol protocol were not sensitive to tlaetion volumes as long as the top and
bottom fractions range from 10% to 15% of the tetdlume in the column (Bienfang,
1981). The biomass in each fraction was determiryechlorophyll extraction using the
same protocol as outlined previously. The sinkingand floating rates (A) were

calculated by Equation 1.
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B!rac(obs) - Bfrac(p'cd) (Q )
B t

AorVy =
(Eq. 1)

where Brac(obs)iS the observed biomass in the top (floating) dtdro (sinking)

fractions. Brac(preq)is the predicted biomass of the fraction basecherstum of

biomass in the column multiplied by the fractioduroe relative to the total volume, h

is the height of the column of water and t is theubation time in hours.

2.9. Grow-out Incubation Studies

Seawater was collected every 2 days during thefdsiin a 5-10 m depth using
a trace metal (TM) clean, all-Tefl8rfish’ pumping system that gently samples
phytoplankton and microzooplankton (Wells et aD02). All experimental preparations
were performed in a fabricated, positive pressaligglastic TM clean room using TM

clean techniques. Seawater was filtered throygteainsed 200-um nylon mesh

(Nitex®) to remove grazers and homogenized in a 50-L popyene carboy. Nutrient

analysis was conducted on the initial seawateectdt to determine if macronutrient
additions were required and amended as necessachigve 15 UM nitrate, 2 uM
orthophosphate, and 15 puM silicate at the beginafrige experiment. Trace metals
had previously been removed from macronutrientkstaising a Chelex-100 ion
exchange resin (Price et al., 1988; 1989). Theotighly mixed seawater was dispensed
into 250-mL clear, polycarbonate bottles beforattreents were added. Treatments
included amending the waters with iron (Fe&@dditions of 1 or 3 nM), copper (CuyO

at 1 or 3 nM) or reducing the free iron through &ldelition of the chelator
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desferrioximine (DFB) (Desferal® - as deferoxaminesylate is N-[5-[3-[(5-
aminopentyl)hydroxycarbamoyl]propionamido]pentyf3-(N-
hydroxyacetamido)pentyl]carbamoyl]propionohydroxamcid monomethanesulfonate)
at 3 nM. The fully prepared bottles were placed iriear PlexigldSincubators.
Temperature was maintained at sea-surface temperatitln flowing surface seawater
and the incident photosynthetic photon flux den@yFD) reduced to an equivalent of
~50% of the maximum daytime irradiation using a boration of neutral density
screening and blue PlexigfasBottles were retrieved after four days (Day 4) an

processed.

2.10. Photosynthetic Efficiency
Photosynthetic efficiencies were measured by com@aine photosynthesis vs.

irradiance responses (P vs. E) on Days 0, 2, 46ariglates of photosynthesis derived
from the amount of Na11-|4C03 incorporated into the cells during short-term ipations
in a temperature-controlled photosynthetron undetrolled light intensities. Five-mL
subsamples were dispensed into 20-mL clear glasslistion vials and each vial was
inoculated with 5 uCi of Na11—I4CO3. The vials were then strategically placed inalco
white (halogen) light-field that provides PPFDsnfr6 to 1,200 pmol photonshs™.
After incubation, subsamples were acidified with BiL of 10% HCI (v/v) to stop the
reaction and allowed to degas &@. 24 h prior to the addition of 15 mL of scintillati
fluid (EcoLume”, MP Biomedicals LLC). Samples were subsequentkethby gentle

inversion and allowed to sit undisturbed in thekdantil they were radio-assayed using

liquid scintillation counting. AIfC uptake (photosynthesis) rates were corrected for

10
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dark uptake using the formula of Parsons et aB4),9P-E curves generated using a

non-linear, least-squares regression techniquae(@faa@rap%; Synergy Software).

Rate estimates of photosynthesis, normalized torophyll a were fitted to the 3-

parameter P-E model of Platt and Gallegos (1980).

3. Results

During September of 2004, the Juan de Fuca eddyrregperienced high
densities oPseudo-nitzschigpp. and the marine euglendiitreptiellasp.
Lagrangian ARGOS-tracked drifters, deployed atahgin of the upwelled nutrients of
the eddy, enabled us to continually track and sari@Pseudo-nitzschialoom for
seven days from its formation to demise. The mostmon species é¢fseudo-
nitzschiapresent wa®. cuspidatahat co-dominated the phytoplankton assemblage
with the euglenoidiutreptiellasp.

This particular drifter was one of several depbbgering September 2004 as
part of a continuing evaluation of the surface entitransport in the Strait of Juan de
Fuca to Columbia River regions (McFadyen et al03)0 Once deployed in the
upwelled waters adjacent to the Juan de Fuca upgetiitiation site, the drifter
proceeded to move northwest for three days thdtedrsouth and circled towards the
coastal waters often associated with the alongestiansport of the Columbia River
(MacFadyen et al., 2005). Prior to exiting the edtg drifter movement slowed from
drifter Day 4 to drifter Day 6 (Fig. 1). The shoetention of the drifter corresponds to
an approach to the coastal front, where the wagssrhad distinctly different

temperature, salinity and nutrients. After drifiay 6, the drifter continued moving in

11



251 arapid pace southeast towards shore and wasvestrapproximately 30 nautical miles

252 offshore.

253 Biological and chemical measurements of the sarveaters indicated that as
254  the drifter proceeded through time and space,itheas path between drifter Day 5
255 and 6 corresponded to definable differences in watsses (Fig. 2). Water

256 temperatures first declined and then increased, thé drifter experiencing moderately
257 cooler, higher salinity waters on drifter Day 5gF2A, 2B). From Days 1-4, total

258 biomass (chh) increased then decreased, while nitrate andaliconcentrations

259 increased slightly and the total densitie®eéudo-nitzschiapp. increased, then

260 remained fairly constant (Fig. 3A-C). Inexplicabllge total abundance Bfseudo-

261 nitzschiadecreased 3-fold on Day 5 (Fig. 3C), without aegponding decrease in

262 biomass or drawdown of either nitrate or silicatg(3B). During the early days of the
263 drifter-based observations, the los$”skudo-nitzschiaells from the surface waters
264 was minimal. The cell sinking rates and the agatieg rates oPseudenitzschiacells
265 remained inconsequential, ensuring that the ceftsained in the surface waters (Fig. 4)
266 until the drifter and associated waters were imgzhbly the putative internal wave

267 upwelling event on drifter Day 5 (details in Leskat al., in prep.).

268 The most dramatic changes in the biology and csieynoccurred around drifter
269 Day 5 associated with the cooler, higher salinityssirface water signal (Figs. 2-3;
270 drifter Days 6-8). After the exchange with thetigally mixed water mass there was a
271 concurrent increase in cell aggregation (Fig. 4pmd increase iRPseudo-nitzschia
272 specific sinking rates, leading to a reductiofPgseudo-nitzschiaell density (Fig. 3C),
273 and an unexpected but prominent increase in dDAeawnations (Figure 3D).

274 Coincidentally, there was also a rapid drawdownityate, but not silicate — indicating

12
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298

a stimulated nutrient-drawdown by community memidleas did not includ€®seudo-
nitzschiaor competing diatoms. Overall, total biomass naisreduced in the drifter
days succeeding the transfer through the front.riibst logical beneficiary of the
change in water mass was the co-blooming eugleoitieptiellasp., that matched the
cell densities oPseudo-nitzschiéor the first four drifter days (Lessard et ah grep.).

In addition to the measurementRgeudo-nitzschidensity, macronutrient and
DA concentrations, and the floating/sinking raté®seudo-nitzschiahe physiological
“health” of the natural population was assessedgusiaters collected on Days 0, 2, 4
and 6 along the drifter path (Fig. 1). These veategre incubated for four days in deck-
board incubators after amendment with Fe or Ciemehts that we propose influence
the growth and DA-levels iRseudo-nitzschial' he resulting photo-physiological
“health” was assessed using the relative performainthe photosystem under
increasing photosynthetic photon flux density (PPFIQ. 5). The photosynthetic rates,
normalized to the concentration$eudo-nitzschiaells, were compared using
ambient water supplemented with either 3 nM DFBmvl Cu + 3 nM DFB.
Respectively, the enrichments allowed us to considee ambient waters were Fe-
limited, Cu-limited, could be Fe-deplete and cdodda combination of Fe-deplete but
requiring Cu. We report the photo-physiologica¢alth” of the community using the
maximum rate of photosynthesis’Festimated from the P vs. E curves for the natura
phytoplankton community under natural conditiond #ren compared to amended
conditions. For example, control (ambient) watdlected on Day 0 (Fig. 5) achieved a
maximum photosynthetic rate cé.4.5 pg C (ig chd)™* ht. When these natural
waters were amended with 3 nM DFB, creating Fessae cells, the maximum

photosynthetic rate decreased ~50%; whereas, wWieeRda-stressed cells were also
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supplemented with 3 nM Cu, the maximum photosyithrate was over 4-fold that of
the iron-stressed cells, and over 2-fold the rateo-augmented cells.

Following this strategy, when cells along the érifpath were assessed for their
‘photosynthetic health’ (via assessment of the pipitysiological state) the early cells,
cells collected directly from the newly upwelleddgdvaters, had a photosynthetic max
of 4 pg C (g chi)™* h* (Fig. 6), but the maximum photosynthetic rate e
dramatically to less than 2 ug C (ug ehh™for drifter Days 2 and 4. Supplementing
these waters with 3 nM Fe did not replenish theroomty’s physiological deficiency.
However, by depleting the waters of available itmough the addition of DFB and
adding 3 nM Cu maximum photosynthetic rates of §#IC (g chk)™* h* were
achieved.

In the second phase of the drifter path, when kajimity, low temperature
waters altered the character of the surface wédeifter Days 6-7; Fig. 2), the
physiological response of the community changeddtecally. The community

achieved greater maximum photosynthetic rates, vathes approaching 7 pug C (ug

chl a)_1 h'_l(Fig. 6). Supplementing the community with 3 nMreather increased nor

decreased the photosynthetic capacity. Howeveritiendment of the Fe-enriched
sample with 3 nM Cu depressed the maximum photbsyictcapacity to < 1 pug C (ug
chl a)'1 h" _ a reduction of rates that indicate Cu-toxicity.

To assess the impact of Cu and Fe additions, oefReval by DFB enrichment,
1 or 3 nM of either Fe, Cu, DFB or DFB + Cu wereled to the grow-out incubation

bottles, and cell growth and toxin characteristvese assessed after 4 days of deck-

board incubation. At all stations, the additiorFefstimulated biomass proportional to

14
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the level of Fe added — indicative of some degfdeedimitation. In contrast, the
addition of Cu reduced the achieved biomass. Tbease in biomass was positively
related to the concentration of added Fe (Fig. TAgre was a corresponding reduction
in achieved biomass under all other treatmentdrifter Days 0, 2, and 4. The
community from drifter Day 6 showed no significalifference in growth compared
with the control (open bars) when provided Cu, Di¥BFB + Cu (Fig. 7B-D).
Considering that the treatments may not affeajetiera in a similar fashion, the
concentrations dPseudo-nitzschiavere recorded over the 4-day incubation period.
GenerallyPseudo-nitzschisvas stimulated by all treatments, in particulaeadrifter
Day 0 (Fig. 8). The most dramatic stimulatiorPsieudo-nitzschigrowth occurred on
drifter Day 4, particularly when DFB was added,ng@r in combination with Cu
(Figure 8B, D), whereas theseudo-nitzschipopulation from drifter Day 6 responded

weakly to all treatments.
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Figure 1. Path of the drifter in the Juan de Fuca EddyrduECOHAB-PNW-III
Cruise:A. An overlay of the drifter path over a SeaWIFS imaf the Juan de Fuca
eddy region image taken Day 3 (September 19, 20B4)he track of drifter. The
drifter was placed in the central edge of the ealiypay 0. Samples for the data
presented here were collected at the indicateditoaas red circled) using either a

10 L Niskin bottles or using the trace metal cl&&h’ and pump sampler.
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Juan de Fuca Eddy, September 2004. Discrete samptescollected using 10-L
Niskin bottles and processed on board. The dalgtedt Day 5 signifies entry into the

second phase of the drifter path.
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4. Discussion

The Juan de Fuca Eddy off Vancouver Island, Bri@®lumbia, Canada and the
Washington coast, USA was reported by Trainer.g2809a, b) to contain a large,
nearly monospecific diatom bloom Bf cuspidatan September 2004 that also

contained the euglenoiButreptiellaspp. Pseudo-nitzschia cuspidateached cell

densities of ~ 6.1 x 160’36"8 [l and produced maximum particulate domoic acid
(pDA), dissolved domoic acid (dDA), and cellulamalmic acid concentrations of 43

- -1 - : .
nmol L l, 4 nmol L™, and 63 pg cel?', respectively. The synoptic survey conducted

during this time revealed that 84% of the statigms 598) had detectabRseudo-
nitzschiacells and 78% had detectable levels of pDA. Vaeiahtios of pDA:dDA in
the eddy region suggested that DA release was wadlatar regulation byPseudo-
nitzschia however, there were no significant correlatioasueen either pDA or
cellular DA and ambient concentrations of macraeuats, including silicate (Figure 9).
Even so, pDA in surface waters (1-5 m depth) wastipely correlated with chh and
negatively correlated with temperatureqp.01) wherPseudo-nitzschiasas present.
These findings demonstrate that Si limitation isaprerequisite or ‘trigger’ for
Pseudo-nitzschigoxicity, as is commonly stated (e.g., Du et2016), and that the
mechanistic basis for DA synthesis is linked indtaother environmental or
nutritional factors. Similarly, there were no gigrant correlations between cellular
DA concentrations and planktonic bacteria or cyaotéria abundances (Beall, 2009),
contrary to the purported links between bactertaviig and DA production byseudo-
nitzschia(cf., review by Lelong et al. 2014), although vameot rule out that there may

have been significant changes in the compositiche@bacterial community (e.g.,
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Hattenrath-Lehmann and Gobler, 2017) or that bectemprising the biofilm of

natural eukaryotic cell walls may contribute to PAduction. There was a correlation

between limiting concentrations of F&a(0.1 nmol El) and the greategtseudo-

nitzschiaabundances, as well as pDA and dDA concentratibrasrer et al., 2009a, b).

The study here focused on a single drifter deploytrdaring the synoptic
survey described by Trainer et al. (2009a) wheesotteanographic and physiological
conditions of a surface populationéeudo-nitzschiaere tracked over time within
the Juan de Fuca Eddy system. The drifter faityfiollowed a single patch of surface
water over six days before being ejected in a sm#hdirection across the perimeter of
the eddy core on Day 7, requiring 2 more days tejeeted completely from the eddy
into the coastal current (Lessard et al., in premdernal wave forcing within this
dynamic system generated periodic infusions of@mglochore saline, subsurface waters
into the surface patch (Fig. 2), which would hasgupplied it with nutrients. Here, our
findings can be viewed in terms of a natural “semitinuous batch” culture system,
where the phytoplankton community in the advectetase patch was supported by at
least two nutrient re-infusions over the 6-daywinnavigation of the eddy core (Fig.
3).

The periodic vertical infusion of subsurface wdtelps to explain the rather
sluggish changes in dissolved macronutrient comagoihs that accompanied the small
but marked increases in total biomass and sigmificecreases iPseudo-nitzschia
abundance (Fig. 3). There was no net consumptiontrate, silicate, and phosphate
(data not shown) over this period, and indeed teitcancentrations actually increased
as the bloom developed (Fig 3B). The combinatioa pérsistently elevatdeseudo-

nitzschiaabundance (Fig 3C), stable photosynthetic ratigs @, and low sinking rates
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(Fig. 4), all point to the maintenance of a healthytoplankton community over the
first 4 days. Indeed, the initially elevated ratvésiggregation and lower cell abundance
on Day 0 suggest that tiRseudo-nitzschiaommunity had re-emerged from less
favorable pre-drifter conditions, perhaps stimudatg vertically-advected infusion of
subsurface waters prior to sampling and Day 1 (Big.

Pseudo-nitzschiaell densities declined precipitously between Dagsd 5
(Fig. 3c), signaling the collapse of the bloom.eTimset of this collapse was not closely
related to declining macronutrient concentratiovisich occurred after Day 5. Bloom
termination corresponded closely with the intenaifion ofPseudo-nitzschiaell-
specific sinking rates (Fig. 4) and the order ofjmtude increase in dissolved DA
concentrationsc@. 2 to 20 nM dDA) in surface waters (Fig. 4D). Ndredess, rapid
declines inPseudo-nitzschiabundance after Day 4 had little effect on total
(chlorophyll) biomass (Fig 3A) due to the compeasaincrease in the abundance of
the marine euglenoidutreptiella(Lessard et al., in prep.).

The factor, or factors, causing the transition fraRseudo-nitzschiao
Eutreptielladominated community after Day 4 are not known.r€hge no indication
that increased grazing pressure was responsibsséke et al., in prep.). And the
collapse of thé’>seudo-nitzschidloom clearly was not triggered by limiting
concentrations of nitrate, silicate, or phosphtite;acute drop in nitrate concentrations
occurred between Days 5 and 6, after the declifs@udo-nitzschiaegan, and even
on Day 6, nitrate concentrations were still in esscef those required to support
maximum rates of uptake by cells of thepseudodelicatissimaomplex(Auro and
Cochlan, 2013). This is in contrast with priorgily stable nutrient conditions,

suggesting that nutrient infusion from internal warocesses ceased, consistent with
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the physical data (Fig. 2). Despite the rapid deseaenPseudo-nitzschiabundance
there were only marginal if any change in totahiiéss (Fig. 3b), attributable to further
in-growth ofEutreptiellaspp. (Lessard et al., in prep.). The enhancedthrofv
Eutreptiellawithin the community coincides with a roughly 3edancrease in
photosynthetic capacity of the transitioning comityurig 6) and the relaxing of the
iron-limitation of the community. The absence omparable silicate drawdown (Fig.
3b) is further evidence of the declining healtiPstudo-nitzschiduring this transition.

If not decreased availability of macronutrients avthen could have initiated
the collapse of thBseudo-nitzschialoom? It is feasible that the transition was
associated with some degree of lateral advectidpaithy” surface waters, given the
dynamics of this system, however, the survey dadaved reasonable spatial uniformity
in the composition of surface water phytoplanktommunity (Trainer et al., 2009a).

At best, any lateral advection would have accedertite apparent community transition
that was occurring more broadly in the region.

The deck-board incubation experiments demonstnaiethe community was Fe
stressed, with the Fe treatment generating marlgréigter total biomass (Fig 7a) and
Pseudo-nitzschiabundance (Fig. 8a) over the course of the dstigaly. The same was
true immediately outside the core perimeter ofEddy on Day 6 (Fig. 7a).

Importantly Fe amendments did not enhance celigtysiology (Fig. 6) however,
indicating that there was sufficient Fe availailit the surface waters to maintain the
existing community, but that more Fe was needeshéble further biomass
accumulation. Even so, the abnormally elevatedtlissl DA concentrationsé. 2-3

nM) are consistent witRseudo-nitzschiaxperiencing significant Fe stress (Maldonado

et al., 2002; Wells et al., 2005).
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Further evidence that there was insufficient bialaljy-available Fe during the
drifter bloom is the comparative ease that Fe stresld be induced by adding the
siderophore DFB. Additions of DFB to both laborgtoultures and natural
phytoplankton communities can decrease Fe avatlafiutchins et al., 1999; Wells,
1999; Wells and Trick, 2004, Shaked and Lis, 20&8) the same decreasing trend in
achieved total biomass with progressively gredatirephore concentrations was seen
here (Fig. 7b). The increased Fe stress is see ilowered community photosynthetic
capacity in the DFB- amended incubations (FigA&hough dissolved Fe
concentrations were not measured during the crpregjous experience in the region
suggested that 1-3 nM DFB additions would comps®xrie-to-much’ of the dissolved
Fe pool, through ligand exchange with the naturghoic ligands (Rue and Bruland,
2001). But trace metal determinations during ti@gsequent cruises to this region
showed Fe concentrationsa#. 2-5 nM Fe (Roy, 2009), so it is reasonable to ekpe
that the DFB amendments would have been suffitceobmplex much but perhaps not
all of the ambient dissolved Fe. This perspeadsvia agreement with the somewhat
muted impact of DFB on total biomass accumulatiig.(7B). In summary, the
phytoplankton community was Fe-stressed at thé @tar over the 6-day drifter
experiment, with biomass increasing upon Fe additamd decreasing when a portion
of the ambient pool of Fe was made less availapleomplexation with DFB.

DFB amendments led to a decreased abundarfésenfdo-nitzschian the deck-
board incubations during the early phases of therhl(Days 2 & 4), but this effect was
vividly reversed on Day 6, whdPseudo-nitzschiabundance increased sharply in the
DFB treatment (Fig. 8a, b). This reversal coincidetth onset of the bloom decline in

surface waters (Fig. 3C), and the order of mageiiandrease in dissolved DA
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concentrations (Fig. 3D). So, when the deck-boacdbation was started on Day 6, DA
concentrations were > 5-fold in excess of the addleB concentration. Although DA
complexes Fe in seawater (Rue and Bruland, 20041)ll iwould not have competed

effectively with DFB for Fe given the massive diface in their conditional stability

. 8.740.5 6.5
constants in seawatdbfKgons qoqriy,= 10 M vs.logK e ey = 10°°,

Rue and Bruland, 1995, 2001). Itis likely inst¢laat the increased dDA
concentrations signal physiological impactsRseudo-nitzschiassociated with the
increased Fe stress caused by DFB. A similar respbas been shown in culture when
Pseudo-nitzschiapp. are placed under Fe limiting conditions (\Wetlal., 2005).

P. multiseriesandP. australiscan fulfil their Fe growth requirements for rapid

exponential growth when non-complexed dissolveddfeentrations (Feare greater

than ~ 25 pM (Maldonado et al., 2002), and it ssmnable to anticipate that
cuspidatawould not have substantially different requirensenthe bulk dissolved Fe
concentrations in these waters would be in far exoé this oceanic level (Roy, 2009),
meaning that the vast bulk of dissolved Fe in thiimy patch existed in organically
complexed forms that were not easily availablP teuspidataTrick et al., 2004).
AlthoughPseudo-nitzschiap. appear to be less efficient at Fe uptake dtiaer
diatoms under Fe-replete conditions, experimemsothstrate their superior ability to
adapt under Fe deplete conditions (Maldonado e2@D2; Wells et al., 2005), and that
the production and release of DA facilitates Feugitjon and alleviating Fe stress.
This enhanced Fe acquisition appears to result Rseudo-nitzschibeing able to
directly extract Fe from strong Fe complexes, ag las Cu is readily available

(Maldonado et al., 2002 Wells et al., 2005). Otfiatoms also show a Cu requirement
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for enhanced Fe uptake under Fe stressed condlititomgy with reduced Fe
requirements through substitution for Fe-contairengymes in the photosynthetic
transport chain (Grotz and Guerinot, 2006; Nouei.e2011). Here, Cu amendment
had little to no consistent effect on total biomasslding only slight decreases at the
highest Cu addition (3 nM) on Days 2 and 4 (Fig). Hbwever, adding Cu sharply
stimulatedPseudo-nitzschigrowth within the community (Fig 8C) whétseudo-
nitzschiaabundance was high (Fig 3C). The same result éas dbserved in cultures
under Fe stress conditions (Maldonado et al., 200|s et al., 2005).

The addition of Cu with DFB enhancBdeudo-nitzschigrowth during the
earlier phase of the bloom by 30-45% over that nieskin the DFB only treatment
(Fig. 8C, D). This effect was even more clearlgwh in the photo-physiological
measurements of the-situ assemblage, where addition of Cu with DFB revetked
negative effect of DFB alone (Fig. 5); indeed, ¢benbination of DFB and Cu yielded a
higher photosynthetic capacity than the controbwlver, these positive effects were
reversed in the incubation initiated on Day 5, wttencollapse of the bloom had
begun, where the combination of decreased Fe &ayaand increased Cu additions
led to markedly lowePseudo-nitzschigrowth. It may be that the decreases in health
of thePseudo-nitzschigopulation, as shown by the increased aggregatioking
rates, and photo-physiology, were sufficiently mas$o prevent recovery.

The substantial increase in dDA at the end of therh would not have
substantially affected dissolved Fe speciatione Bod Bruland (2001) calculate that
dDA concentrations of 100 nM would lead to DA coaxdtion ofca. 25% of the
dissolved Fe pool, so by extrapolation ocdy 5% of Fe would have existed as a DA

complex in the drifter surface waters. However,Di#ferelease would have affected
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582 dissolved Cu speciation to a much greater extedtjaing free cupric ion

583 concentrations by a factor of 2-3 during Days @ by more than a 100-fold after
584 Day 5 (Rue and Bruland, 2001). Given the combineskosations showing targeted
585 release of DA by Fe-starvétseudo-nitzschiat’s strong effect on Cu complexation,
586 the positive Cu effect oRseudo-nitzschighoto-physiology (Fig. 5), and the necessity
587 of Cu for enhancing growth of Fe-stresg&sudo-nitzschia both the laboratory

588 (Maldonado et al., 2002; Wells et al., 2005) amttificonditions (Wells et al., 2005; Fig.
589 8C), we believe that DA production affects the domology and success Bseudo-
590 nitzschiain coastal waters through the alleviation of fratiation via enhanced Cu

591 acquisition.

592 The sharp increase in dDA concentrations coincwdigtal the transition from a
593 Pseudo-nitzschi@ominated to &utreptielladominated communityPseudo-nitzschia
594 spp. appear to be somewhat more sensitive to Geitiothan other diatoms

595 (Maldonado et al., 2002), and one might hypothefiaethe purpose of DA release by
596 the cell is to diminish Cu toxicity, were it notrfthe observations that Cu is essential
597 for inducing the high affinity Fe uptake systenPiseudo-nitzschi@/Nells et al., 2005).
598 Although we have no direct measure of the sensitofithe co-occurrindeutreptiella
599 spp.to Cu, other euglenoids show significant sensitifiNetto et al., 2012). It seems
600 possible then that decreases in cupric ion conagomis due to the large release of
601 dissolved DA during the collapse of tReeudo-nitzschibloom may have enhanced the
602 growth success d&utreptiella

603 Nitrogen measurements on the cruise were limiteakidized N forms, so we
604 are unable to assess whether DA production watedeta changes in the supply of

605 reduced nitrogen forms, even though we now knowttieaform of nitrogen is critical
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to DA production (Howard, et al., 2007; Radan amd!@an, 2018).
5. Conclusions

The rapid response to additions of Cu and Fe -igatd increased biomass —
changes that are catalysed with the release of dDtrate why simple correlations
between dDA and environmental conditions, suchi#smacronutrient concentrations,
have not revealed a strong association. Our rdaltiinvestigation of bloom
progression illustrates that the rapid releaseddA & highest at the intersection of three
critical conditions (sufficient macronutrients, Idwe and low Cu). Our corresponding
survey approach never revealed the intensive eleiadDA under these conditions.
The lack of reveal is due potentially to the ramdponse of the cells to altered
environmental condition, and the ephemeral nattitbeothree conditions in the waters
of the PNW. Typical static cruise sampling proisashere the time (distance)
between sampling locations are long lack to prenisd capture the toxin signal. This
work adds supporting evidence to the important oblfeace metals, not macronutrient
limitation (most notably silicate) in forecastirtgetsuccess and demise of toxigenic
Pseudo-nitzschian the PNW. Although the toxic threat of DA toastal ecosystems
and the health of marine mammals, birds and hunisud#ectly linked to the
concentration of particulate DA (pDA). The presstutdy clearly underscores the
physiological importance of dissolved DA in the d®pment of such toxic diatom

blooms. It is not just a wicked problem, but a vedky transient problem.
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